Local Integration via REST/MQTT

Important Note

Services like REST API and MQTT require a license. Please visit www.whatwatt.ch/pricing for more information.

Version	1.6
Date	04/02/2025

whatwatt.ch info@whatwatt.ch

©2025 whatwatt

Version	Date	Author	Changes
1.0	02.09.2024	SJ	Initial Version
1.1	05.09.2024	SJ	Corrections
1.2	17.01.2025	ТК	Corrections
1.3	20.01.2025	ТК	Corrections
1.4	20.01.2025	SJ	Update & Corrections
1.5	04.02.2025	SJ	Update & Corrections
1.6	20.02.2025	SJ	Update & Corrections

1.	Introduction	4
1.1.	Local REST API over HTTP	4
1.2.	MQTT Client Connection	4
1.3.	Conclusion	4
2.	General Information	5
2.1.	Device connected via WiFi and powered by the meter	5
2.2.	Finding a device on your local network	5
2.3.	Reading general system information	5
3.	Reading meter reports with REST API HTTP	11
3.1.	Polling method	11
3.2.	Streaming method	16
4.	Integration over MQTT client	18
4.1.1.	Template Description	19
4.1.2.	Reading variables locally	22
5.	Settings	27
5.1.	General convention for using local REST API	27
5.2.	Service management and basic settings	27
5.3.	Meter communication settings	29
5.4.	Reading of currently applied scaler values	30
5.5.	Meter custom scalers settings	32
5.6.	Wi-Fi network setup	33
5.7.	Scan Wi-Fi networks	34
5.8.	Starting WPS pairing	36
5.9.	Ethernet Configuration	36
5.10.	Restarting the device device	37
5.11.	Factory reset	37
5.12.	SD card access	37
5.13.	Firmware Update	38
Appen	ıdix A	40
Under	standing HTTP Requests, Methods, Response Codes, Body, and Path.	40
HTTP	Response Codes	40
HTTP	Request Body	40
HTTP	Path	40
Conclu	usion	41
Appen	idix B	42
Using	curl Command Options	42
Appen	ndix C	43
Appen	idix D	45

1. Introduction

The whatwatt Go device can be integrated into systems using two primary methods: the MQTT client connection and local REST API over HTTP. Each method offers unique advantages and is suited for different scenarios, particularly concerning network reliability, bandwidth usage, and ease of integration.

1.1. Local REST API over HTTP

The REST API provides a straightforward method for integrating the whatwatt Go device through standard web protocols. Key advantages include:

- Ease of integration with various systems due to its simplicity and compatibility with many development environments.
- Allows for direct implementation of CRUD operations (Create, Read, Update, Delete) on the data provided by the device.

1.2. MQTT Client Connection

MQTT (Message Queuing Telemetry Transport) is a lightweight, publish-subscribe messaging protocol. It is particularly beneficial for scenarios where bandwidth usage and network reliability are significant concerns. By connecting as an MQTT client, the whatwatt GO device can:

- Efficiently handle high volumes of data transmission with minimal overhead.
- Ensure low latency, making it ideal for real-time monitoring and control applications.
- Optimize the use of network resources, providing a reliable method for data communication.

1.3. Conclusion

In summary, the whatwatt Go device offers versatile integration options to cater to different needs. The MQTT client connection method is ideal for applications requiring real-time power usage monitoring and efficient network usage, while the REST API over HTTP offers a simple and widely compatible integration method. Both methods ensure that the device can be seamlessly incorporated into various systems, enhancing its functionality and utility.

2. General Information

2.1. Device connected via WiFi and powered by the meter

When powering the device via the meter interface only (especially via MBUS) and using WiFi, keep in mind the limited power resources of the device, do not call the HTTP API too often because in extreme cases the system will shut down for a certain period of time.

If you notice that the device turns off when working with the cloud via MQTT, disable unnecessary services and reduce the frequency of sending reports.

Also keep in mind that the distance from the WiFi router matters in regards to the energy consumption.

2.2. Finding a device on your local network

You can locate the device via mDNS.

The hostname of device is whatwatt-<last 6 hexadecimal upper-case letters of device identifier>.local

You need to search for the HTTP service: _http.tcp of name whatwatt Go ABCDEF (where ABCDEF is the last 6 hexadecimal upper-case letters of device identifier).

In TXT record for service, you can find the device id and device type. The device type for Whatwatt GO is equal to 100.

Example result

```
ens38 IPv4 Whatwatt Go 9F8124 WebUI Web Site local
hostname = [Whatwatt-9F8124.local]
address = [192.168.99.176]
port = [80]
txt = ["id=A842E39F8124" "type=100"]
```

2.3. Reading general system information

System information can be read using HTTP. To do this, make a GET request with the path api/v1/ system.

Endpoint	api/v1/system
Method	GET
Response content type	application/json

Note – If you have set a password for the Web UI interface, then each HTTP request requires the credentials to be passed in the form of Basic-Authentication.

Example response

```
"device": {
  "name": "",
  "id": "A842E39F8124",
  "model": "WW Go 1.1",
  "firmware": "1.2.6",
  "upgrade_capable": true,
"date": "2025-01-22",
"time": "11:25:31",
  "time_since_boot": 166,
  "last_reboot": {
     "date": "2025-01-22",
     "time": "11:22:45"
  },
  "plug": {
     "v_usb": 5.25,
"v_mbus": 0,
     "v_p1": 5.23,
     "v scap": 4.75
  }
}.
```

```
"clouds": {
   "whatwatt": {
     "enabled": true,
     "connected": true
   },
   "mystrom": {
     "enabled": false,
"status": "DISABLED"
   },
   "solar manager": {
     "enabled": false,
     "connected": false
   },
   "mqtc": {
     "enabled": false,
     "connected": false
  }
},
"meter": {
  "status": "OK",
   "interface": "P1",
  "id": "20000741",
   "manufacturer": "Ensor",
  "type": "ESR51030712084367",
"model": "1ESR0012084367",
   "protocol": "DSMR",
   "protocol_version": "5.0",
  "report_interval": 0.998,
"tariff": 1,
"date": "2025-01-22",
"time": "11:25:31"
},
"wifi": {
  "ssid": "sjj",
"bssid": "DC15C84FBAB6",
   "channel": 13,
   "ht": "20",
   "rssi": -35,
   "signal": 100,
   "auth mode": "WPA2-WPA3",
  "pairwise_cipher": "CCMP",
"group_cipher": "CCMP",
"phy": "bgn",
"wps": false,
   "country": "CH",
   "mac": "A842E39F8124",
  "ip": "192.168.99.176",
"mask": "255.255.255.0",
   "gateway": "192.168.99.1",
   "dns": "0.0.0.0",
   "status": "OK",
   "mode": "STA"
},
"sd_card": {
  "installed": true,
  "type": "SDHC/SDXC",
"size": 7618,
  "speed": 20
}
```

}

JSON object fields description

Field	Туре	Range	Description
.device.name	string	031	You can set device name used Web UI System > Name
.device.id	string	12 upper-case hexadecimal letters	The unique identifier of device
.device.model	string		The model of device
.device.firmware	string		Firmware version installed on device
.device.date	string	YYYY-MM-DD	System date in local time zone
.device.time	string	HH:MM:SS	System time in local time zone
.device.time_since_reboot	int		Seconds from last reboot
.device.last_reboot.date	string	YYYY-MM-DD	Date of last reboot in local time zone
.device.last_reboot.time	string	HH:MM:SS	Time of last reboot in local time zone
.device.plug.v_usb	double		
.device.plug.v_mbus	double		
.device.plug.v_p1	double	· · · · · · · · · · · · · · · · · · ·	
.device.plug.v_scap	double		In the case of powering the device from the meter via the M-bus and many enabled services, check if this voltage does not drop below 4.5V. If the voltage keeps dropping since the device is turned on, reduce the number of services turned on or the report times.
.clouds.whatwatt.enabled	boolean		Status is the whatwatt cloud enabled
.clouds.whatwatt.connected	boolean		Status is there a connection to the cloud whatwatt
.clouds.mystrom.enabled	boolean		Status if myStrom Cloud is enabled
.clouds.mystrom.status	string	DISABLED DISCONNECTED WAITING TIME CONNECTING DO HANDSHAKE CONNECTED REGISTERED	myStrom Service Status
	boolean		Status if Solar Manager Cloud is enabled
.clouds.solar_manager.connec ted	boolean		Status: whether there is a connection to the Solar Manager cloud
.clouds.mqtc.enabled	boolean		Status if the local MQTT client is enabled
.clouds.mqtc.connected	boolean		Status if the local MQTT client is connected
.meter.status	string	NOT CONNECTED NO DATA RECOGNITION OK ENCRYPTION KEY KEY REQUIRED NOT RECOGNIZED	

Field	Туре	Range	Description
.meter.interface	string	NONE P1 MBUS TTL MEP	Type of meter interface used, physical layer
.meter.id	string		Meter identifier
.meter.manufacturer	string		Meter manufacturer if specified
.meter.type	string		Meter type if specified
.meter.model	string		Meter model if specified
.meter.protocol	string	DSMR DLMS KMP MEP MBUS	Data protocol, logical layer
.meter.protocol_version	string		Meter protocol version if specified
.meter.report_interval	double		Meter report interval
.meter.tariff	uint	1, 2	Current tariff on meter if specified then value is different from zero
.meter.date	string		Date on meter in local time zone
.meter.time	string		Time on meter in local time zone
.wifi.ssid	string	132	The SSID (Service Set Identifier) is the name of a Wi-Fi network. It's the identifier that devices use to connect to the correct wireless network among multiple available networks.
.wifi.bssid	string	12 upper-case hexadecimal letters	The BSSID (Basic Service Set Identifier) is the MAC (Media Access Control) address of a wireless access point or router. It uniquely identifies each access point in a Wi-Fi network.
.wifi.channel	uint	113	A Wi-Fi channel is a specific frequency range within a Wi-Fi band that routers and devices use to communicate wirelessly.
.wifi.ht	string	20 40+ 40-	Wi-Fi HT (High Throughput) is a mode used in the Wi-Fi 802.11n standard that increases the network's data throughput. It uses MIMO (Multiple Input Multiple Output) technology to transmit multiple data streams simultaneously, enhancing network performance.
.wifi.rssi	int	dBm	Wi-Fi RSSI: RSSI (Received Signal Strength Indicator) measures the power level of a received signal. It's expressed in decibels (dBm) with higher values (closer to zero) indicating stronger signals. For example, -30 dBm is a very strong signal, while -90 dBm is very weak.
.wifi.signal	uint	0100	Wi-Fi signal strength in precents
.wifi.auth_mode	string	open WEP WPA WPA2 WPA-WPA2 EAP WPA3 WPA2-WPA3 WAPI OWE WPA3-ENT	Wi-Fi auth_mode (authentication mode) determines how device authenticate on a Wi-Fi network.

Field	Туре	Range	Description
.wifi.pairwise_cipher	string		The pairwise cipher in Wi-Fi security refers to the encryption method used to secure unicast (one-to-one) communication between a client device and an access point.
.wifi.group_cipher	string	none WEP40 WEP104 TKIP CCMP TKIP-CCMP AES-CMAC-128 SMS4 GCMP GCMP256 AES-GMAC-128 AES-GMAC-256 unknown	The group cipher in Wi-Fi security refers to the encryption method used to secure multicast and broadcast communications within a Wi-Fi network.
.wifi.phy	string	bgn	
.wifi.wps	string	true or false	
.wifi.country	string	2 characters	The Wi-Fi country code is a setting that determines the regulatory domain for a Wi-Fi device, such as a router or access point.
.wifi.mac	12 upper-case hexadecimal letters	12 upper-case hexadecimal letters	A MAC address (Media Access Control address) is a unique identifier assigned to a network interface controller (NIC) for use in communications within a network segment.
.wifi.ip	IPv4 string	ddD.ddD.ddD.ddD	An IPv4 address assigned to an interface is a unique identifier used to identify a device on a network.
.wifi.mask	IPv4 string	ddD.ddD.ddD.ddD	A netmask is a 32-bit binary mask used to divide an IP address into subnets and specify the network's available hosts.
.wifi.gateway	IPv4 string	ddD.ddD.ddD.ddD	A gateway IP address, also known as a default gateway, is an IP address that serves as an access point or "gateway" to other networks. It acts as a bridge between your local network and external networks, such as the internet.
.wifi.dns	IPv4 string	ddD.ddD.ddD.ddD	A DNS IP address refers to the IP address of a DNS (Domain Name System) server. The DNS server is responsible for translating human- readable domain names (like www.example.com) into machine-readable IP addresses (like 192.168.1.1).
.wifi.status	string	OK Error Disabled Disconnected	
.wifi.mode	string	STA	
.ethernet.mac	string	12 upper-case hexadecimal letters	
.ethernet.ip	IPv4 string	ddD.ddD.ddD.ddD	Same as in the case of Wi-Fi. Small d is optional digit, big D is always present digit
.ethernet.mask	IPv4 string	ddD.ddD.ddD.ddD	Same as in the case of Wi-Fi. Small d is optional digit, big D is always present digit
.ethernet.gateway	IPv4 string	ddD.ddD.ddD.ddD	Same as in the case of Wi-Fi. Small d is optional digit, big D is always present digit
.ethernet.dns	IPv4 string	ddD.ddD.ddD.ddD	Same as in the case of Wi-Fi. Small d is optional digit, big D is always present digit

Field	Туре	Range	Description
.ethernet.status	string	Up Down	Ethernet interface status
.sd_card.installed	boolean		Is a microSD card installed in the system
.sd_card.type	string		Type of microSD card
.sd_card.size	uint		Logical size of the microSD card
.sd_card.speed	uint		Card bus frequency in MHz

3. Reading meter reports with REST API HTTP

3.1. Polling method

Reading measurements from the meter is possible by calling the API api/v1/report with the GET method.

Endpoint	api/v1/report
Method	GET
Response content type	application/json

Example response for Landis+Gyr E450

```
{
 "report": {
    "id": 54143,
    "interval": 3.055,
    "date_time": "2024-08-24T13:51:07Z",
    "instantaneous_power": {
      "active": {
        "positive": {
          "total": 0.042
        "total": 0
        }
      }
   "active": {
        "positive": {
          "total": 47.251,
          "t1": 33.388,
"t2": 14.642
        },
        "negative": {
          "total": 8.965,
          "t1": 7.868,
          "t2": 1.097
        }
      },
      "reactive": {
        "imported": {
          "inductive": {
            "total": 33.713,
            "t1": 31.7,
"t2": 2.013
          },
          "capacitive": {
            "total": 2.247,
            "t1": 2.247,
"t2": 0
          }
        },
        "exported": {
          "inductive": {
            "total": 3.555,
            "t1": 2.727,
"t2": 0.828
          },
          "capacitive": {
            "total": 30.562,
            "t1": 4.852,
            "t2": 26.951
          }
        }
      }
```

```
}
},
"meter": {
    "status": "OK",
    "interface": "MBUS",
    "protocol": "DLMS",
    "id": "636192",
    "model": "636192"
},
"system": {
    "id": "A842E39F8124",
    "date_time": "2024-09-02T13:02:37Z",
    "boot_id": "99D2A6A4",
    "time_since_boot": 253234
}
```

Example response for Ensor eRS801

```
{
  "report": {
    "id": 1810,
     "interval": 1.001,
    "tariff": 1,
"date_time": "2025-01-22T11:54:02Z",
     "instantaneous_power": {
       "active": {
          "positive": {
            "total": 0.037,
            "11": 0.037,
            "12": 0,
"13": 0
          },
          "negative": {
    "total": 0,
            "11": 0,
            "12": 0,
            "13": 0
          }
       }
     },
     "voltage": {
       "11": 234.34,
"12": 36.19,
"13": 36.54
    "11": 0.22,
"12": 0,
       "13": 0
     },
     "energy": {
    "active": {
          "positive": {
            "total": 68.092,
            "t1": 44.258,
"t2": 23.834
          },
          "negative": {
            "total": 0,
            "t1": 0,
"t2": 0
          }
       }
     },
     "conv_factor": 1
  },
  "meter": {
```

©2025 whatwatt

```
"status": "OK",
"interface": "P1",
"protocol": "DSMR",
"protocol_version": "5.0",
"logical_name": "ESR51030712084367",
"id": "20000741",
"model": "1ESR0012084367",
"vendor": "Ensor",
"prefix": "ESR"
},
"system": {
"id": "A842E39F8124",
"date_time": "2025-01-22T11:54:032",
"boot_id": "B3E61904",
"time_since_boot": 1878
}
```

The API returns an object containing three main sub-objects: report, meter, and system. The report object includes real-time measurements. The meter object provides details about the meter, and the system object describes the system.

Note – Fields within the report object may vary, and the presence of certain fields depends on the data sent by the meter.

Fields description

Field	Туре	Unit	Description
.report.id	uint		Report incremental identifier
.report.interval	double	S	Report period
.report.tariff	uint		1 - t1, 2 - t2
.report.date_time	ISO8601		Time when report was generated in local time. The default time zone is European time zone. CET-1CEST,M3.5.0,M10.5.0/3
.report.instantaneous_power.active.positive.total	double	kW	Positive active instantaneous power (A+)
.report.instantaneous_power.active.positive.l1	double	kW	Positive active instantaneous power (A+) in phase L1
.report.instantaneous_power.active.positive.l2	double	kW	Positive active instantaneous power (A+) in phase L2
.report.instantaneous_power.active.positive.l3	double	kW	Positive active instantaneous power (A+) in phase L3
.report.instantaneous_power.active.negative.total	double	kW	Negative active instantaneous power (A-)
.report.instantaneous_power.active.negative.l1	double	kW	Negative active instantaneous power (A-) in phase L1
.report.instantaneous_power.active.negative.l2	double	kW	Negative active instantaneous power (A-) in phase L2
.report.instantaneous_power.active.negative.l3	double	kW	Negative active instantaneous power (A-) in phase L3
.report.instantaneous_power.reactive.positive.total	double	kvar	Positive reactive instantaneous power (Q+)
.report.instantaneous_power.reactive.positive.l1	double	kvar	Positive reactive instantaneous power (Q+) in phase L1

Field	Туре	Unit	Description
.report.instantaneous_power.reactive.positive.l1	double	kvar	Positive reactive instantaneous power (Q+) in phase L2
.report.instantaneous_power.reactive.positive.l3	double	kvar	Positive reactive instantaneous power (Q+) in phase L3
.report.instantaneous_power.reactive.negative.total	double	kvar	Negative reactive instantaneous power (Q-)
.report.instantaneous_power.reactive.negative.l1	double	kvar	Negative reactive instantaneous power (Q-) in phase L1
.report.instantaneous_power.reactive.negative.l2	double	kvar	Negative reactive instantaneous power (Q-) in phase L2
.report.instantaneous_power.reactive.negative.l3	double	kvar	Negative reactive instantaneous power (Q-) in phase L1
.report.instantaneous_power.apparent.total	double	kVA	Apparent instantaneous power (S+)
.report.voltage.l1	double	V	Instantaneous voltage (U) in phase L1
.report.voltage.l2	double	V	Instantaneous voltage (U) in phase L2
.report.voltage.l3	double	V	Instantaneous voltage (U) in phase L3
.report.current.l1	double	A	Instantaneous current (I) in phase L1
.report.current.l2	double	A	Instantaneous current (I) in phase L2
.report.current.l3	double	A	Instantaneous current (I) in phase L3
.report.energy.active.positive.total	double	kWh	Positive active energy (A+) total
.report.energy.active.positive.t1	double	kWh	Positive active energy (A+) in tariff T1
.report.energy.active.positive.t2	double	kWh	Positive active energy (A+) in tariff T2
.report.energy.active.negative.total	double	kWh	Negative active energy (A-) total
.report.energy.active.negative.t1	double	kWh	Negative active energy (A-) in tariff T1
.report.energy.active.negative.t2	double	kWh	Negative active energy (A-) in tariff T2
.report.energy.rective.positive.total	double	kvarh	Positive reactive energy (Q+) total
.report.energy.rective.positive.t1	double	kvarh	Positive reactive energy (Q+) in tariff T1
.report.energy.rective.positive.t2	double	kvarh	Positive reactive energy (Q+) in tariff T2
.report.energy.rective.negative.total	double	kvarh	Negative reactive energy (Q-) total
.report.energy.rective.negative.t1	double	kvarh	Negative reactive energy (Q-) in tariff T1
.report.energy.rective.nagative.t2	double	kvarh	Negative reactive energy (Q-) in tariff T2
.report.energy.reactive.imported.inductive.total	double	kvarh	Imported inductive reactive energy in 1- st quadrant (Q1) total
.report.energy.reactive.imported.inductive.t1	double	kvarh	Imported inductive reactive energy in 1- st quadrant (Q1) in tariff T1
.report.energy.reactive.imported.inductive.t2	double	kvarh	Imported inductive reactive energy in 1- st quadrant (Q1) in tariff T2
.report.energy.reactive.imported.capacitive.total	double	kvarh	Imported capacitive reactive energy in 2-nd quadrant (Q2) total
.report.energy.reactive.imported.capacitive.t1	double	kvarh	Imported capacitive reactive energy in 2-nd quadr. (Q2) in tariff T1
.report.energy.reactive.imported.capacitive.t2	double	kvarh	Imported capacitive reactive energy in 2-nd quadr. (Q2) in tariff T2

Field	Туре	Unit	Description
.report.energy.reactive.exported.inductive.total	double	kvarh	Exported inductive reactive energy in 3- rd quadrant (Q3) total
.report.energy.reactive.exported.inductive.t1	double	kvarh	Exported inductive reactive energy in 3- rd quadrant (Q3) in tariff T1
.report.energy.reactive.exported.inductive.t2	double	kvarh	Exported inductive reactive energy in 3- rd quadrant (Q3) in tariff T2
.report.energy.reactive.exported.capacitive.total	double	kvarh	Exported capacitive reactive energy in 4-th quadrant (Q4) total
.report.energy.reactive.exported.capacitive.t1	double	kvarh	Exported capacitive reactive energy in 4-th quadr. (Q4) in tariff T1
.report.energy.reactive.exported.capacitive.t2	double	kvarh	Exported capacitive reactive energy in 4-th quadr. (Q4) in tariff T2
.report.max_demand.active.positive.total	double	kW	Positive active maximum demand (A+) total
.report.max_demand.active.positive.t1	double	kW	Positive active maximum demand (A+) in tariff T1
.report.max_demand.active.positive.t2	double	kW	Positive active maximum demand (A+) in tariff T2
.report.max_demand.active.negative.total	double	kW	Negative active maximum demand (A-) total
.report.max_demand.active.negative.t1	double	kW	Negative active maximum demand (A-) in tariff T1
.report.max_demand.active.negative.t2	double	kW	Negative active maximum demand (A-) in tariff T2
.report.power_factor	double		Instantaneous power factor
.report.conv_factor	uint		Conversion coefficient, the value of the integer by which instantaneous power, energy, current, max demand will be multiplied
.meter.status	string	NOT CONNECTED NO DATA RECOGNITION OK ENCRYPTION KEY KEY REQUIRED NOT RECOGNIZED	Enumerated string
.meter.interface	string	P1 TTL MBUS	Physical interface
.meter.protocol	string	DSMR DLMS KMP MEP	Logical interface
.meter.protocol_version	string		Communication protocol version
.meter.logical_name	string		Meter logical name
.meter.id	string		Meter identifier, usually serial number
.meter.model	string		Meter model in case it could be identified
.meter.vendor	string		Meter supplier name, if identifiable

Field T	Гуре Unit	Description
.meter.prefix s	string	3 letter vendor prefixes
.system.id s	string	whatwatt Go unique identifier
.system.date_time	SO8601	Local date time for time zone
.system.boot_id s	string	Random string generated after each reboot
.system.time_since_boot d	double s	Time in second since boot

3.2. Streaming method

Endpoint	api/v1/live
Method	GET
Response content type	text/event-stream

To use this method, you must specify connection/keep-alive in the request. Data will be sent at the same frequency as the meter sends reports.

Note - You can only establish one connection to this endpoint, if disconnected reconnect.

Example event stream data. Measurement data is sent in a live event.

```
event: live
```

data: {"P_In":0.036,"P_Out":0,"P_P1_In":0,"P_P2_In":0,"P_P3_In":0,"P_P1_Out":0,"P_P2_Out" :0,"P_P3_Out":0,"P_P_In":0,"P_P_In_T1":0,"P_P_In_T2":0,"I_P1":0,"I_P2":0,"I_P3":0," V_P1":0,"V_P2":0,"V_P3":0,"rP_In":0,"rP_Out":0,"PF":0,"E_In":47.251,"E_In_T1":33.38 8,"E_In_T2":14.668,"E_Out":8.965,"E_Out_T1":7.868,"E_Out_T2":1.097,"rE_In":0,"rE_Ou t":0,"Date":"2024-08-24","Time":"14:34:00","Uptime":71.05}

In case of this API all fields are always sent, even if the meter does not send such value, then the field value is zero or empty string.

Field	Туре	Unit	Description
P_In	double	kW	Positive active instantaneous power (A+)
P_Out	double	kW	Negative active instantaneous power (A-)
P_P1_In	double	kW	Positive active instantaneous power (A+) in phase L1
P_P2_In	double	kW	Positive active instantaneous power (A+) in phase L2
P_P3_In	double	kW	Positive active instantaneous power (A+) in phase L3
P_P1_Out	double	kW	Negative active instantaneous power (A-) in phase L1
P_P2_Out	double	kW	Negative active instantaneous power (A-) in phase L2
P_P3_Out	double	kW	Negative active instantaneous power (A-) in phase L3
P_P_In	double	kW	Positive active maximum demand (A+) total
P_P_In_T1	double	kW	Positive active maximum demand (A+) in tariff T1

Fields in data object

Field	Туре	Unit	Description
P_P_In_T2	double	kW	Positive active maximum demand (A+) in tariff T2
I_P1	double	A	Instantaneous current (I) in phase L1
I_P2	double	A	Instantaneous current (I) in phase L2
I_P3	double	А	Instantaneous current (I) in phase L1
V_P1	double	V	Instantaneous voltage (U) in phase L1
V_P2	double	V	Instantaneous voltage (U) in phase L2
V_P3	double	V	Instantaneous voltage (U) in phase L3
rP_In	double	kvar	Positive reactive instantaneous power (Q+)
rP_Out	double	kvar	Negative reactive instantaneous power (Q-)
PF	double		Instantaneous power factor
E_In	double	kWh	Positive active energy (A+) total
E_In_T1	double	kWh	Positive active energy (A+) in tariff T1
E_In_T2	double	kWh	Positive active energy (A+) in tariff T2
E_Out	double	kWh	Negative active energy (A-) total
E_Out_T1	double	kWh	Negative active energy (A-) in tariff T1
E_Out_T2	double	kWh	Negative active energy (A-) in tariff T2
rE_In	double	kvarh	Positive reactive energy (Q+) total
rE_Out	double	kvarh	Negative reactive energy (Q-) total
Date	string	Y-m-d	State the date in the format year-month-day based on local time
Time	string	H:M:S	provide the time in local format as hour:minute:second
Uptime	double	hour	System uptime

4. Integration over MQTT client

The device can be connected to the MQTT broker using the built-in MQTT client. The MQTT client supports unencrypted and encrypted connections.

HTTP REST API to configure MQTT client (you can also do it from the device's WebUI)

Endpoint	api/v1/mqtt/settings
Method	GET, POST, PUT

Response content type application/json

MQTT settings object description

Field	Туре	Default	Range	Remarks
enable	boolean	false		
url	string	empty string	0127, should start with mqtt:// or mqtts://	mqtt - for not encrypted TCP based connections, mqtts - for encrypted TLS based connections
username	string	empty string	0127	The username is a unique identifier for the client, allowing the broker to manage and control access levels.
password	string	empty string	0127	
client_id	string	empty string	063	The client ID is a unique identifier assigned to each client connecting to the MQTT broker. It is used to identify the client and manage its connection state. The client ID must be unique for each client connected to the same broker; otherwise, the broker will disconnect the existing client with the same ID.
skip_cn_check	boolean	false		Skips server certificate Common Name validation
publish.topic	string	empty string	0127	An MQTT publish topic is a string that the MQTT client uses to identify where to send messages.
publish.template	string	empty string	01023	The template

Note - The password field isn't returned by GET method.

Example response

```
{
   "enable": true,
   "url": "mqtts://mqtt.xxx.io",
   "username": "xxxxxxxxxx",
   "client_id": "whatwattGO",
   "skip_cn_check": false,
   "publish": {
        "topic": "/up/xxxx/id/xxxx",
        "template": "{\"sys_id\":\"${sys.id}\",\"meter_id\":\"${meter.id}\",\"time\":
        \"${meter.date_time}\",\"tariff\":${tariff},\"power_in\":${1_7_0},\"power_out\":
        ${2_7_0},\"energy_in\":${1_8_0},\"energy_out\":${2_8_0}}"
   }
}
```

To set the value, send the same object as you received, add the password field if required. To replace the entire configuration, use the POST method, to update the configuration, e.g. by sending one field, use the PUT method (then the password will not be deleted).

It is also possible to set the period with which reports will be sent via MQTT, the default period is 30s but if the meter sends reports less often it will be longer. You can change this setting via WebUI in the System>Interval to Systems section.

4.1.1. Template Description

The message published by the client is defined using a template, the message format can be anything but always text.

You can embed variables in the template, these can both be measurement and system variables.

A variable in a template is embedded in a section starting with a dollar sign, followed by an opening curly brace, the variable name, and a closing curly brace: \${variable_name}.

The available variables are predefined, at this time you cannot define your own.

Note – If a variable appears in the template that is not resolved, then the variable will not be replaced and the entire \${some_undefined_variable} string will be in the output message. Be careful when integrating with your system, it may happen that one of the variables is not sent by the meter, the variable will take the value null in case of a numeric variable or an empty string in case of a string variable. Some meters send values alternately and after power on the device, they will be determined only after some time, during this time some variables may not be correctly substituted.

Example template

```
{
    "sys_id": "${sys.id}",
    "meter_id": "${meter.id}",
    "time": "${timestamp},
    "tariff": ${tariff},
    "power_in": ${1_7_0},
    "power_out": ${2_7_0},
    "energy_in": ${1_8_0},
    "energy_out": ${2_8_0}
}
```

Note – This is not valid JSON. The JSON will only be valid when all variables are resolved. Also note that some variables are always a number (written as text) and some are text, in the JSON payload you need to enclose text variables in quotes.

This template will generate a message in JSON format after substituting variables

```
{
    "sys_id": "A842E39F8124",
    "meter_id": "636192",
    "time": 1725281386,
    "tariff": 0,
    "power_in": 1.1,
    "power_out": 0,
    "energy_in": 123.4,
    "energy_out": 0
```

Possible variables

The first column Name usually refers to short OBIS form part C.D.E. Keep in mind that the meter does not send all fields. The value returned for a network interface depends on which one is connected.

Name	Туре	Unit	Description
1_8_0	double	kWh	Positive active energy (A+) total
energy.in	double	kWh	Positive active energy (A+) total
1_8_1	double	kWh	Positive active energy (A+) in tariff T1

Name	Туре	Unit	Description
1_8_2	double	kWh	Positive active energy (A+) in tariff T2
2_8_0	double	kWh	Negative active energy (A-) total
energy.out	double	kWh	Negative active energy (A-) total
2_8_1	double	kWh	Negative active energy (A-) in tariff T1
2_8_2	double	kWh	Negative active energy (A-) in tariff T2
3_8_0	double	kvarh	Positive reactive energy (Q+) total
3_8_1	double	kvarh	Positive reactive energy (Q+) in tariff T1
3_8_2	double	kvarh	Positive reactive energy (Q+) in tariff T2
4_8_0	double	kvarh	Negative reactive energy (Q-) total
4_8_1	double	kvarh	Negative reactive energy (Q-) in tariff T1
4_8_2	double	kvarh	Negative reactive energy (Q-) in tariff T2
5_8_0	double	kvarh	Imported inductive reactive energy in 1-st quadrant (Q1) total
5_8_1	double	kvarh	Imported inductive reactive energy in 1-st quadrant (Q1) in tariff T1
5_8_2	double	kvarh	Imported inductive reactive energy in 1-st quadrant (Q1) in tariff T2
6_8_0	double	kvarh	Imported capacitive reactive energy in 2-nd quadrant (Q2) total
6_8_1	double	kvarh	Imported capacitive reactive energy in 2-nd quadr. (Q2) in tariff T1
6_8_2	double	kvarh	Imported capacitive reactive energy in 2-nd quadr. (Q2) in tariff T2
7_8_0	double	kvarh	Exported inductive reactive energy in 3-rd quadrant (Q3) total
7_8_1	double	kvarh	Exported inductive reactive energy in 3-rd quadrant (Q3) in tariff T1
7_8_2	double	kvarh	Exported inductive reactive energy in 3-rd quadrant (Q3) in tariff T2
8_8_0	double	kvarh	Exported capacitive reactive energy in 4-th quadrant (Q4) total
8_8_1	double	kvarh	Exported capacitive reactive energy in 4-th quadr. (Q4) in tariff T1
8_8_2	double	kvarh	Exported capacitive reactive energy in 4-th quadr. (Q4) in tariff T2
1_6_0	double	kW	Positive active maximum demand (A+) total
1_6_1	double	kW	Positive active maximum demand (A+) in tariff T1
1_6_2	double	kW	Positive active maximum demand (A+) in tariff T2
2_6_0	double	kW	Negative active maximum demand (A-) total
2_6_1	double	kW	Negative active maximum demand (A-) in tariff T1
2_6_2	double	kW	Negative active maximum demand (A-) in tariff T2
1_7_0	double	kW	Positive active instantaneous power (A+)
power.in	double	kW	Positive active instantaneous power (A+)
21_7_0	double	kW	Positive active instantaneous power (A+) in phase L1
41_7_0	double	kW	Positive active instantaneous power (A+) in phase L2
61_7_0	double	kW	Positive active instantaneous power (A+) in phase L3
2_7_0	double	kW	Negative active instantaneous power (A-)
power.out	double	kW	Negative active instantaneous power (A-)
22_7_0	double	kW	Negative active instantaneous power (A-) in phase L1

Name	Туре	Unit	Description
42_7_0	double	kW	Negative active instantaneous power (A-) in phase L2
62_7_0	double	kW	Negative active instantaneous power (A-) in phase L3
3_7_0	double	kvar	Positive reactive instantaneous power (Q+)
23_7_0	double	kvar	Positive reactive instantaneous power (Q+) in phase L1
43_7_0	double	kvar	Positive reactive instantaneous power (Q+) in phase L2
63_7_0	double	kvar	Positive reactive instantaneous power (Q+) in phase L3
4_7_0	double	kvar	Negative reactive instantaneous power (Q-)
24_7_0	double	kvar	Negative reactive instantaneous power (Q-) in phase L1
44_7_0	double	kvar	Negative reactive instantaneous power (Q-) in phase L2
64_7_0	double	kvar	Negative reactive instantaneous power (Q-) in phase L3
9_7_0	double	kVA	Apparent instantaneous power (S+)
31_7_0	double	A	Instantaneous current (I) in phase L1
51_7_0	double	A	Instantaneous current (I) in phase L1
71_7_0	double	A	Instantaneous current (I) in phase L3
32_7_0	double	V	Instantaneous voltage (U) in phase L1
52_7_0	double	V	Instantaneous voltage (U) in phase L2
72_7_0	double	V	Instantaneous voltage (U) in phase L3
13_7_0	double		Instantaneous power factor
tariff	uint		1, 2
conv_factor	uint		Conversion coefficient, the value of the integer by which instantaneous power, energy, current, max demand will be multiplied
timestamp	uint		UTC UNIX timestamp
meter.date_time	string	IS08601	Report date time in local time
meter.id	string		Meter ID
meter.type	string		Meter type
meter.vendor	string		Meter vendor
meter.model	string		Model of meter
meter.interface	string	P1 TTL MBUS	
meter.protocol	string	DSMR DLMS KMP MEP	
meter.protocol_ver	string	ç	Meter protocol version
meter.status	string	NOT CONNECTED NO DATA RECOGNITION OK ENCRYPTION KEY KEY REQUIRED NOT RECOGNIZED	Status ENCRYPTION KEY meaning that something wrong is with encryption key, it can be incorrect or additional key is needed.
sys.name	string	<	Name of device (can be set WebUI)

Name	Туре	Unit	Description
sys.id	string		whatwatt Go system identifier
sys.firmware	string		Firmware version
sys.date_time	string	ISO8601	System local time
plug.interface	string	NONE P1 TTL MBUS	Physical interface connected to the device
plug.voltage.usb	double	V	
plug.voltage.p1	double	V	
plug.voltage.mbus	double	V	
wifi.mode	string	off sta ap apsta nan	Wi-Fi operation mode
wifi.sta.status	string	disabled disconnected error ok	Connection status
wifi.sta.ssid	string		Name of AP network - name of network where device is connected
wifi.sta.bssid	string	MAC	MAC address of AP
wifi.sta.rssi	int	dBm	WiFi received signal strength indication
wifi.sta.channel	uint	1-13	Wi-Fi channel
wifi.sta.mac	string	MAC	MAC address of Wi-Fi interface
wifi.sta.ip	string	IPv4	IPv4 address assigned to Wi-Fi interface
wifi.sta.mask	string	IPv4	IPv4 netmask assigned to Wi-Fi interface
wifi.sta.gw	string	IPv4	IPv4 gateway address assigned to Wi-Fi interface
wifi.sta.dns	string	IPv4	IPv4 DNS server assigned to Wi-Fi interface
eth.state	string	up down	Status of Ethernet
eth.mac	string	MAC	MAC address of Ethernet interface
eth.ip	string	IPv4	IPv4 address assigned to Ethernet interface
eth.mask	string	IPv4	IPv4 netmask assigned to Ethernet interface
eth.gw	string	IPv4	IPv4 gateway address assigned to Ethernet interface
eth.dns	string	IPv4	IPv4 DNS server assigned to Ethernet interface

4.1.2. Reading variables locally

Endpoint	api/v1/variables
Method	GET
Response content type	application/json

Example result

```
[
  {
    "sys.name":""
 },
  {
    "sys.id":"A842E39F8124"
  },
  {
    "sys.firmware":"1.2.15"
  },
  {
    "sys.date_time":"2025-02-20T17:49:45Z"
  },
  {
    "1_8_0":"24.087"
  },
  {
    "energy.in":"24.087"
  },
  {
    "1_8_1":"null"
  },
  {
    "1_8_2":"null"
  },
  {
    "2_8_0":"0.004"
  },
  {
    "energy.out":"0.004"
  },
  {
    "2_8_1":"null"
  },
  {
    "2_8_2":"null"
  },
  {
    "3_8_0":"10.505"
  },
  {
    "3 8 1":"null"
  },
  {
    "3_8_2":"null"
  },
  {
    "4_8_0":"15.385"
  },
  {
    "4_8_1":"null"
  },
  {
    "4_8_2":"null"
  },
  {
    "5_8_0":"null"
  },
  {
    "5_8_1":"null"
  },
  {
    "5_8_2":"null"
 },
  {
    "6_8_0":"null"
  },
  {
    "6_8_1":"null"
```

```
},
{
  "6_8_2":"null"
},
{
  "7 8 0":"null"
},
{
  "7 8 1":"null"
},
{
  "7_8_2":"null"
},
{
  "8 8_0":"null"
},
{
  "8 8 1":"null"
},
{
  "8_8_2":"null"
},
{
  "1 6 0":"null"
},
{
  "1 6 1":"null"
},
{
  "1_6_2":"null"
},
{
  "2 6 0":"null"
},
{
  "2_6_1":"null"
},
{
  "2_6_2":"null"
},
{
  "1 7 0":"0.006"
},
{
  "power.in":"0.006"
},
{
  "21_7_0":"0.006"
},
{
  "41 7 0":"0"
},
{
  "61 7 0":"0"
},
{
  "2_7_0":"0"
},
{
  "power.out":"0"
},
{
  "22 7 0":"0"
},
{
  "42 7 0":"0"
},
{
  "62_7_0":"0"
},
```

```
{
  "3_7_0":"null"
},
{
  "23_7_0":"0"
},
{
  "43 7 0":"0"
},
{
  "63_7_0":"0"
},
{
  "4_7_0":"null"
},
{
  "24_7_0":"0.007"
},
{
  "44_7_0":"0"
},
{
  "64_7_0":"0"
},
{
  "9_7_0":"null"
},
{
  "31_7_0":"0.06"
},
{
  "51_7_0":"0"
},
{
  "71_7_0":"0"
},
{
  "32_7_0":"233"
},
{
  "52_7_0":"0"
},
{
  "72_7_0":"0"
},
{
  "13_7_0":"null"
},
{
  "tariff":"2"
},
{
  "conv_factor":"1"
},
{
  "timestamp":"1735542122"
},
{
  "meter.date_time":"2024-12-30T08:02:02Z"
},
{
  "meter.id":""
},
{
  "meter.type":"LGZ1030662444349"
},
{
  "meter.vendor":"Landis+Gyr"
},
```

©2025 whatwatt

{

```
"meter.model":""
},
{
  "meter.interface": "MBUS"
},
{
  "meter.protocol":"DLMS"
},
{
  "meter.protocol ver":""
},
{
  "meter.status":"OK"
},
{
  "plug.interface":"MBUS"
},
{
  "plug.voltage.usb":"5.272"
},
{
  "plug.voltage.p1":"2.844"
},
{
  "plug.voltage.mbus":"10.952"
},
{
  "wifi.mode":"sta"
},
{
  "wifi.sta.status":"ok"
},
{
  "wifi.sta.ssid":"sjj"
},
{
  "wifi.sta.bssid":"DC15C84FBAB6"
},
{
  "wifi.sta.rssi":"-30"
},
{
  "wifi.sta.channel":"13"
},
{
  "wifi.sta.mac":"A842E39F8124"
},
{
  "wifi.sta.ip":"192.168.99.176"
},
{
  "wifi.sta.mask":"255.255.255.0"
},
{
  "wifi.sta.gw":"192.168.99.1"
},
{
  "wifi.sta.dns":"0.0.0.0"
}
```

1

5. Settings

5.1. General convention for using local REST API

The local REST API allows you to read, overwrite, update, or delete values. Typically, the body is returned and processed in JSON format.

The activity is determined by the HTTP method used in the API request

- The GET method allows you to read the value.
- The **POST** method overwrites all values; if no value is sent in JSON, it defaults to the same value as if the device was restored to factory settings.
- The **PUT** method allows you to update selected fields; the JSON you upload should contain the fields you selected.
- The **DELETE** method deletes all configuration for the selected endpoint and is only available for selected endpoints.

In addition, the use of a local REST API follows the general conventions for the use of local APIs, which ensures compatibility and optimal communication performance between different components of the system.

Execution of each method returns an HTTP status code

- 200 success along with the response, usually in JSON format,
- 204 execution without a return message,
- 400 bad request, invalid parameters, ranges in JSON object,
- 401 unauthorized,
- 404 endpoint not found, disabled or unavailable,
- 500 internal problem of the device,
- 503 service unavailable.

5.2. Service management and basic settings

This endpoint enables management of services and basic system settings.

HTTP REST API to configure services (you can also do it from the device's WebUI):

Endpoint	api/v1/settings
Method	GET, POST, PUT
Response content type	application/ison

Settings JSON object description

Field	Туре	Default	Range	Remarks
.system.name	string	empty string		System name, device name, name given by the user
.system.host_name	string	whatwatt_XXXXXX, where X is the last 6 digits of the device ID	031	Hostname as seen on the network
.system.protection	boolean	false		Specifies whether the password for the HTTP server, and thus the REST API and local WebUI, should be required
.system.password	string	empty string		HTTP server password. The password is not returned when reading this API

Field	Туре	Default	Range	Remarks
.services.cloud.what_watt	boolean	true		Enables/disables whatwatt (cloud connection)
.services.cloud.solar_manager	boolean	false		Enables/disables the Solar Manager service (cloud connection)
.services.cloud.mystrom	boolean	true		Enables/disables myStrom (cloud connection)
.services.local.solar_manager	boolean	true		Enables/disables the local Solar Manager integration API
.services.broadcast	boolean	true		Enables/disables mDNS broadcasting
.services.report_interval	uint	30		Frequency of reporting to the cloud, currently only applies to custom MQTT integration
.services.sd.frequency	uint	15	11440	Frequency in seconds of writing reports to the SD card
.services.sd.enable	boolean	false		Enable/disable saving reports to SD card

*Not described fields are not currently supported

Example response on GET request

```
{
 "system": {
    "name": "",
    "host_name": "whatwatt_9F8124",
    "protection": false
  },
"services": {
    "cloud": {
       "what watt": true,
       "solar_manager": false,
       "mystrom": false
    "solar_manager": false
     },
    "broadcast": true,
    "other_energy_provider": false,
"report_interval": 30,
    "log": true,
    "meter_proxy": false,
    "sd": {
      "frequency": 15,
       "enable": false
    }
 }
}
```

5.3. Meter communication settings

This endpoint allows you to set the parameters of communication with the meter. Mainly the settings of the serial port and the physical layer of communication.

HTTP REST API to configure meter port (you can also do it from the device's WebUI):

Endpoint	api/v1/meter/settings
Method	GET, POST, PUT

Response content type application/json

Meter settings JSON object description

Field	Туре	Default	Range	Remarks
.baudrate	uint	115200	300115200	Data transfer rate over serial interface
.parity	string	none	none odd even	Parity control of data transmitted over the serial interface
.stop_bits	string	1	1 1.5 2	Number of stop bits in serial transmission
.encryption	boolean	false		Enable data encryption at the logical layer
.encryption_key	string	empty string	3232 hexadecimal characters	Data encryption key. The key value is not returned when reading this API. If you want to reset the key, set the field to 32 zeros
.authentication_key	string	empty string	3232 hexadecimal characters	The meter authorization key on whatwatt device is optional. The key is not returned when reading the API. If you want to reset it, set it to 32 zeros
.tx_invert	bool	false		Reverse the polarity of the transmission data line in the serial interface
.rx_invert	bool	false		Reverse the polarity of the data receiving line in the serial interface
.auto_baudrate	bool	true		Automatic serial port settings. The whatwatt device will try to determine the serial port settings such as baudrate, parity, stop_bits, tx_invert, rx_invert based on the electrical parameters of the serial interface
.if_type	string	auto	auto p1 mbus ttl mep	Physical interface of the meter connected to the whatwatt device. With the auto option selected, the whatwatt device will try to automatically determine the type of interface, and thus the serial port settings and the protocol used on the logical layer
.conv_factor	uint	1	110000	Conversion coefficient, the value of the integer by which instantaneous power, energy, current, max demand will be multiplied
.time_offset	int	0	int32	Meter time correction, if the meter has an incorrect time, it is possible to set an offset in seconds to correct the time in reports processed by the device
.sync_time_offset_with_ntp	bool	false		NTP time-based time_offset auto-following. The time offset value is automatically adjusted. Note that by disabling this option, the time_offset will not be restored to the previous value or zero and must be set separately

Field	Туре	Default	Range	Remarks
.scalers_set	5	default Ige570 custom		Allows you to select the scaling scheme for the values sent by the meter, this applies to COSEM class 3 objects. The set includes different scales for different logical names (OBIS). A default value will cause the device to attempt to automatically adjust the scale, in some cases it will default to scaling in the remaining cases. The Ige570 value is a predefined scale set for the L&G E570. The custom set allows you to set your own scaling for individual values

Example response on GET request

```
ł
 "baudrate": 115200,
 "parity": "none",
 "stop bits": "1",
 "buffer_size": 64,
 "method": "Passive Push",
 "encryption": false,
 "rx invert": false,
 "tx invert": false,
 "auto_baudrate": true,
 "if type": "auto",
 "conv factor": 1,
 "time offset": 0,
 "sync time_offset_with_ntp": false,
 "scalers_set": "default"
2
```

5.4. Reading of currently applied scaler values

This endpoint allows you to read individual scale values for specific register values that the meter transmits. This API uses a shortened convention of logical name/OBIS, which is in the format C.D.E.

The present value is the value that has been determined by the device itself at the detection stage, covered/overridden by a set of scalers selected by the scalers_set (note that the scalers_set does not have to cover all values).

Currently, the current value of scale factors can only be read for meters that exchange data in DLMS format.

Scale factors apply only to COSEM Class 3 objects.

Endpoint	api/v1/meter/scalers/current
Method	GET
Response content type	application/json
Avalliable since FW version	1.2.15

Current scalers JSON object description

Field	Туре	Remarks	
[].obis	string	The field value is a shorthand representation of the OBIS notation representing the C.D.E part. Only those OBIS codes that have been recognized by the device and belong to COSEM class 3 are included in the response.	
[].scaler		The value of the field determines the currently applied scaling factor for the OBIS code. The scaled factor is expressed as a power of ten (10 ^s caler). For example, a value of -3 means that the output value from the meter is multiplied by 0.001, and a value of 3 means multiplication by 1000.	

Example response on GET request

```
{
   "obis":"1.8.0",
   "scaler": 0
 },
 {
   "obis":"2.8.0",
   "scaler": 0
},
{
   "obis":"3.8.0",
   "scaler": 0
 },
 {
   "obis":"4.8.0",
   "scaler": 0
},
 {
   "obis":"1.7.0",
"scaler": 0
},
 {
   "obis":"2.7.0",
"scaler": 0
 },
 {
   "obis":"32.7.0",
"scaler": 0
},
 {
   "obis":"52.7.0",
"scaler": 0
},
 {
   "obis":"72.7.0",
"scaler": 0
},
{
  "obis":"31.7.0",
"scaler": -2
},
 {
   "obis":"51.7.0",
"scaler": -2
 },
 {
   "obis":"71.7.0",
   "scaler": -2
},
```

```
"obis":"21.7.0",
   "scaler": -2
},
{
   "obis":"41.7.0",
"scaler": -2
},
{
   "obis":"61.7.0",
"scaler": -2
},
{
   "obis":"22.7.0",
"scaler": -2
},
{
   "obis":"42.7.0",
   "scaler": -2
},
{
   "obis":"62.7.0",
"scaler": -2
},
{
   "obis":"23.7.0",
"scaler": -2
},
{
   "obis":"43.7.0",
   "scaler": -2
},
{
   "obis":"63.7.0",
"scaler": -2
},
{
   "obis":"24.7.0",
   "scaler": -2
},
{
   "obis":"44.7.0",
   "scaler": -2
},
{
   "obis":"64.7.0",
"scaler": -2
}
```

{

5.5. Meter custom scalers settings

This endpoint allows for the setting of individual scaling values for specific register values transmitted by the meter. This API uses a shortened convention of logical name/OBIS, which is in the format C.D.E.

Currently, these settings operate exclusively for messages in the DLMS format.

Scale factors apply only to COSEM Class 3 objects.

HTTP REST API to configure individual scalers (you can also do it from the device's WebUI):

Endpoint	api/v1/meter/scalers/custom
Method	GET, POST
Response content type	application/json

1

Field	Туре	Range	Remarks
[].obis	string	255	This field should be formatted to represent the C.D.E part of the logical OBIS code. For example, it can be 1.8.0. If we want to apply the scaler for all E values, such as in the case of tariffs, we can write 1.8.255. The value '255' indicates that the scaler will be applied to all E values. Only OBIS codes belonging to COSEM class 3 should be defined.
[].scaler	int		This field should specify the scaler value, which is expressed in powers of ten. For example, a value of -3 will multiply the register value by 0.001, and a value of 3 will multiply it by 1000.

Example response on GET request

```
[
    {
        "obis": "1.7.0",
        "scaler": -1
    },
    {
        "obis": "2.7.0",
        "scaler": -1
    }
]
```

When performing the settings using the POST method, the same JSON format must be used.

5.6. Wi-Fi network setup

This endpoint allows you to configure a connection to a Wi-Fi network. HTTP REST API to configure wifi settings (you can also do it from the device's WebUI):

Endpoint	api/v1/wifi/sta/settings
Method	GET, POST, PUT, DELETE
Response content type	application/json

Wifi sta settings JSON object description

Field	Туре	Default	Range	Remarks
.enable	boolean	false		Enables Wi-Fi communication in station mode (the device connects to the Router or Access Point)
.name	string	empty string	132	The name of the Wi-Fi network you want the device to connect to (SSID). Field is required
.password	string	empty string	864	The password to the Wi-Fi network, if set, must be at least 8 characters long. It is possible to enter a password in the form of a hexadecimal notation of 64 characters. The field may remain late if the network is an open network (without a password)
.static_ip	bool	false		Applies to setting a static recipient instead of using a DHCP client. Remember that when setting static addressing, address collision can occur in the network, so you need to be sure that no other device has the same address or will not have it. DHCP servers on Routers are usually configured in such a way that they assign addresses in the range 192.168.X.100 to 192.168.X.200, so that static addresses for various devices are safely set below 100 or above 200.

Field	Туре	Default	Range	Remarks
.ip	string	0.0.0.0		String stored as an IPv4 address. This is a static IP address of the device in the network, it can have a value e.g. 192.168.X.201 where X is a subnet e.g. 0, 1, 2 etc.
.netmask	string	0.0.0.0		String stored as an IPv4 address. This is a subnet mask, it must be set to non-zero values if you set a static IP address. Typically, the mask value is 255.255.255.0
.gateway	string	0.0.0.0		String stored as an IPv4 address. This is the gateway address, in other words, the address of the device (Router) to which the whatwatt device sends data to redirect it to the Internet. The value cannot be zero in the case of setting a static IP address. Typically, the gateway value is 192.168.X.1, where X replaces your individual gateway value
.dns	string	0.0.0.0		String stored as an IPv4 address. This is the address of the DNS server, this server is used to resolve names on the network to IP addresses, e.g. Example.com can be resolved to 1.2.3.4. Setting this value to nonzero is required if you set a static IP address. You can enter an external IP address here, such as 8.8.8.8 or the same address as in the gateway field, then the router will resolve the names
.max_power	float	17	021	The transmission power of the Wi-Fi radio on the whatwatt device expressed in dBm, you can increase or decrease this value. Please note that in the case of restricted power supply options, such as powering only from the M-bus interface without an external power supply, the amount of power may be insufficient. Resolution is 0.5

The DELETE method erases all Wi-Fi configuration and shuts down the client.

Example response on GET request

```
{
   "enable": true,
   "name": "sjj",
   "static_ip": false,
   "ip": "0.0.0.0",
   "netmask": "0.0.0.0",
   "gateway": "0.0.0.0",
   "dns": "0.0.0.0",
   "max_tx_power": 0
}
```

5.7. Scan Wi-Fi networks

This endpoint allows you to search for nearby Wi-Fi networks. Scanning Wi-Fi networks over Ethernet is not recommended.

HTTP REST API to scanning Wi-Fi networks (you can also do it from the device's WebUI):

Endpoint	api/v1/wifi/scan
Method	GET
Response content type	application/json

Wifi scan JSON object description

Field	Туре	Range	Remarks
[].ssid	string	132	The SSID (Service Set Identifier) is the name of a Wi-Fi network. It's the identifier that devices use to connect to the correct wireless network among multiple available networks.
[].bssid	string	12 hexadecimal characters	The BSSID (Basic Service Set Identifier) is the MAC (Media Access Control) address of a wireless access point or router. It uniquely identifies each access point in a Wi-Fi network.
[].channel	uint	113	A Wi-Fi channel is a specific frequency range within a Wi-Fi band that routers and devices use to communicate wirelessly.
[].ht	string	20 40+ 40-	Wi-Fi HT (High Throughput) is a mode used in the Wi-Fi 802.11n standard that increases the network's data throughput. It uses MIMO (Multiple Input Multiple Output) technology to transmit multiple data streams simultaneously, enhancing network performance.
[].rssi	int	-1270	Wi-Fi RSSI: RSSI (Received Signal Strength Indicator) measures the power level of a received signal. It's expressed in decibels (dBm), with higher values (closer to zero) indicating stronger signals. For example, -30 dBm is a very strong signal, while -90 dBm is very weak.
[].signal	uint	0100	Wi-Fi signal strength in precents
[].auth_mode	string	open WEP WPA WPA2 WPA-WPA2 EAP WPA3 WPA3-WPA3 WAPI OWE WPA3-ENT	Wi-Fi <i>auth_mode</i> (authentication mode) determines how device authenticate on a Wi-Fi network.
[].pairwise_cipher	string		The pairwise cipher in Wi-Fi security refers to the encryption method used to secure unicast (one-to-one) communication between a client device and an access point.
[].group_cipher	string	none WEP40 WEP104 TKIP CCMP TKIP-CCMP AES-CMAC-128 SMS4 GCMP GCMP256 AES-GMAC-128 AES-GMAC-256 unknown	The group cipher in Wi-Fi security refers to the encryption method used to secure multicast and broadcast communications within a Wi-Fi network.
[].phy	string	bgn	
[].wps	string	true or false	
[.country	string	2 characters	The Wi-Fi country code is a setting that determines the regulatory domain for a Wi-Fi device, such as a router or access point.

5.8. Starting WPS pairing

This endpoint allows you to start pairing using WPS. The same can be done by pressing a button on the device. Pairing will automatically turn off after 2 minutes if the pairing button is not pressed on the Access Point or Router, or if there is a problem. Wi-Fi pairing via WPS can be invoked in both client mode and whatwatt access point mode, WPS pairing can also be enabled when the device has Wi-Fi turned off. Successful pairing automatically configures the device to operate in station/client mode. A failed pairing reverts to the previous Wi-Fi settings if the device was already paired or turns off Wi-Fi if you start it from the access point mode of the whatwatt device. Enabling WPS pairing over Ethernet is not recommended.

Sent a POST request to this endpoint returns a 204 code with no message if successful.

HTTP REST API to start WPS pairing (you can also do it from the device's WebUI):

Endpoint	api/v1/wifi/wps

Method POST

Wi-Fi Protected Setup (WPS) is a network security standard that facilitates the connection between a router and wireless devices. It simplifies the process of connecting to a secure wireless network by enabling users to press a physical button on the router to pair devices. The goal of WPS is to make it easier for non-technical users to connect devices to their Wi-Fi network without entering long passphrases.

5.9. Ethernet Configuration

This endpoint allows you to configure an Ethernet connection. HTTP REST API to configure Ethernet settings (you can also do it from the device's WebUI)

Endpoint api/v1/eth/settings

Method GET, POST, PUT

Response content type application/json

Ethernet settings JSON object description

Field	Туре	Default	Range	Remarks
.enable	boolean	true		Enables Ethernet port
.static_ip	bool	false		Applies to setting a static addressing instead of using a DHCP client. Remember that when setting static addressing, address collision can occur in the network, so you need to be sure that no other device has the same address or will not have it. DHCP servers on Routers are usually configured in such a way that they assign addresses in the range 192.168.X.100 to 192.168.X.200, so that static addresses for various devices are safely set below 100 or above 200.
.ip	string	0.0.0.0		String stored as an IPv4 address. This is a static IP address of the device in the network, it can have a value e.g. 192.168.X.201 where X is a subnet e.g. 0, 1, 2 etc.
.netmask	string	0.0.0.0		String stored as an IPv4 address. This is a subnet mask, it must be set to non- zero values if you set a static IP address. Normally, the mask value is 255.255.255.0
.gateway	string	0.0.0.0		String stored as an IPv4 address. This is the gateway address, in other words, the address of the device (Router) to which the whatwatt device sends data to redirect it to the Internet. The value cannot be zero in the case of setting a static IP address. Normally, the gateway value is 192.168.X.1, where X replaces your individual gateway value

Field	Туре	Default	Range	Remarks
.dns	string	0.0.0.0		String stored as an IPv4 address. This is the address of the DNS server, this server is used to resolve names on the network to IP addresses, e.g. Example.com can be resolved to 1.2.3.4. Setting this value to nonzero is required if you set a static IP address. You can enter an external IP address here, such as 8.8.8.8 or the same address as in the gateway field, then the router will resolve the names

Example response on GET request

```
{
   "enable": true,
   "static_ip": false,
   "ip": "0.0.0.0",
   "netmask": "0.0.0.0",
   "gateway": "0.0.0.0",
   "dns": "0.0.0.0"
}
```

5.10. Restarting the device device

This endpoint allows you to reboot the device.

Performing a POST under this endpoint returns a 204 code with no message if successful (you can also do it from the device's WebUI)

HTTP REST API to reboot the device:

Endpoint	api/v1/reboot
Method	POST

5.11. Factory reset

This endpoint allows you to restore your device to factory settings. You can also do this with a push.

Performing a POST under this endpoint returns a 204 code with no message if successful (you can also do it from the device's WebUI).

HTTP REST API to factory reset the device:

Endpoint api/v1/restore

Method POST

5.12. SD card access

This endpoint permits the browsing and downloading of files from your SD card. If the card is not mounted, an error code 503 will be returned.

HTTP REST API to access SD card:

Method GET

Response content type variable

The content of the response varies depending on the part of the path following /. If no extension of the file is specified, then an attempt will be made to list the directory. E.g. The sdcard/ request returns the contents of the root directory

Directory JSON object description

Field	Туре	Remarks
.path	string	The path for which the content is listed
.files[].name	string	File or directory name
.files[].size	uint	File size, for the directory the value is 0
.files[].type	string	Enumeration value: file dir. Allows you to specify whether it is a directory or a file

Example response for directory list

```
{
 "path": "/sdcard/",
 "files": [
   {
      "name": "20240929.CSV",
     "size": 636151,
      "type": "file"
    },
    {
      "name": "SYSTEM~1",
      "size": 0,
      "type": "dir"
    },
    {
      "name": "20240930.CSV",
     "size": 942763,
      "type": "file"
    },
    {
      "name": "20241006.CSV",
     "size": 215651,
     "type": "file"
    }
 ]
}
```

If you download a file, e.g. sdcard/20240929.CSV MIME type will try to determine it based on the file extension.

MIME type, which stands for Multipurpose Internet Mail Extensions, is a standard that indicates the nature and format of a file. It helps the internet to understand how to handle different file types, such as text, images, audio, video, etc., by specifying the file's type and subtype. For example, when downloading a file with a .csv extension, the MIME type might be text/csv, which tells the browser or application that it is a text file in CSV format.

5.13. Firmware Update

This endpoint allows you to update the firmware. The file should be sent in multipart/form-data format. (The update can also be performed from the WebUI of the device).

Endpoint	load
Method	POST
Response content type	plain/text

The following is an example of the curl command to update the firmware: curl -i -F file=@upgrade_file.bin http://192.168.1.101/load Multipart/form-data is a media type used to encode the files and other form data when they are being uploaded via HTTP POST requests. This format splits the form data into multiple parts, each separated by a boundary, and encodes each part with its own content type and disposition metadata. The parts together form the payload of the HTTP request.

The origin of multipart/form-data can be traced back to RFC 2388, which was published in 1998. This specification was developed to address the limitations of traditional form submission formats, such as application/x-www-form-urlencoded, which struggled with handling binary data and complex file uploads effectively. By allowing each part of the form to be processed independently, multipart/form-data enabled more robust and flexible handling of diverse data types, facilitating the seamless upload of files and enhancing the web's interactive capabilities.

Appendix A

Understanding HTTP Requests, Methods, Response Codes, Body, and Path.

Introduction

The Hypertext Transfer Protocol (HTTP) is the foundation of any data exchange on the Web and a protocol used for transmitting hypermedia documents, such as HTML. It is designed to enable communications between clients and servers. This guide will delve into the various aspects of HTTP requests, methods, response codes, body, and path.

HTTP Requests

An HTTP request is a message sent by the client to initiate an action on the server. The request contains several key components, including the method, path, headers, and body. The request's purpose is to perform a specific action, such as retrieving data, submitting data, or deleting data on the server.

HTTP Methods

HTTP defines a set of request methods to indicate the desired action to be performed for a given resource. These methods are often referred to as HTTP verbs. Here are some of the most commonly used methods:

- GET: Requests data from a specified resource.
- POST: Submits data to be processed to a specified resource.
- PUT: Updates a current resource with new data.
- DELETE: Deletes the specified resource.

Each method defines a specific action that can be performed on the resource, and it must be used appropriately to ensure the correct operation of the API.

HTTP Response Codes

When a server receives and processes an HTTP request, it sends back a response. The response includes a status code, which indicates the result of the request. Here are some of the key status codes:

- 200: Success The request has succeeded, and the server returns the requested resource, usually in JSON format.
- 204: No Content The server successfully processed the request, but there is no content to return.
- 400: Bad Request The server could not understand the request due to invalid syntax or parameters.
- 401: Unauthorized The client must authenticate itself to get the requested response.
- 404: Not Found The server cannot find the requested resource; it may be disabled or unavailable.
- 500: Internal Server Error The server encountered an internal problem and could not complete the request.
- 503: Service Unavailable The server is not ready to handle the request, often due to maintenance or overload.

HTTP Request Body

The body of an HTTP request is used to send data to the server. This data is typically sent with POST or PUT requests and can be in various formats, such as JSON, XML, or form data. The body contains the payload that the client wants to send to the server for processing.

HTTP Path

The path is a part of the URL that identifies a specific resource on the server. It usually follows the domain name and defines the endpoint to which the request is being sent. For example, in the context provided, the path for the service management and basic settings endpoint is:

api/v1/settings

This path, combined with the appropriate HTTP method, allows the client to perform actions such as retrieving, updating, or deleting the resource related to system settings.

Conclusion

Understanding HTTP requests, methods, response codes, body, and path is essential for effectively working with web APIs. Each component plays a crucial role in ensuring seamless communication between the client and server, allowing for efficient data exchange and resource management. By mastering these elements, developers can create robust and reliable applications that leverage the power of HTTP.

To interact with web APIs effectively, the `curl` command-line tool is invaluable. It allows for the execution of HTTP requests directly from the terminal, providing a versatile and powerful means of engaging with endpoints such as those described.

Appendix **B**

Using curl Command Options

 -i: This option is used to include the HTTP response headers in the output. When making a request, it's often crucial to see the headers returned by the server, as they contain important information such as status codes and content types.

curl -i [URL]

 -s: The `-s` option stands for "silent" mode. It suppresses progress meters and error messages, making the output cleaner and more readable, especially useful when processing the response in scripts.

curl -s [URL]

 -d: This option is used to send data in a POST request. You'll typically use this option when you need to submit form data or JSON payloads to the server for processing. It's crucial in scenarios where the request body must be included.

curl -X POST -d '{"key": "value"}' [URL]

 -X: The `-X` option allows you to specify the HTTP method to use for the request, such as GET, POST, PUT, DELETE, etc. This is essential for interacting with APIs that require specific methods to perform different actions.

curl -X PUT -d '{"setting": "new value"}' [URL]

By combining these options, you can craft precise and powerful HTTP requests tailored to your needs. For example, to send a JSON payload with a POST request and include the response headers, you could use:

curl -i -X POST -d '{"setting": "new value"}' [URL]

Mastering the `curl` command and its options equips you with the ability to seamlessly communicate with web APIs, ensuring efficient and effective interactions with server resources.

Appendix C

Below is a script that allows you to flatten a JSON structure using the jq command. This powerful tool streamlines the process of manipulating JSON data, enabling you to transform nested structures into a more manageable and readable format. By leveraging jq, you can effectively query and reshape your JSON data with ease, making it an invaluable asset for developers and data analysts alike. Dive into the script and discover how jq can enhance your data processing capabilities, turning complex JSON hierarchies into simplified, flat structures.

```
#!/bin/bash
```

```
jq -r '
  def walk(path):
    if (type == "object") then
      to entries[]
      | . as $entry
      | $entry.value
      walk(path + [ $entry.key ])
    elif (type == "array") then
      to entries[]
      | . as $entry
      | $entry.value
      | walk(path + [ "[\($entry.key)]" ])
    else
      "\(path | join("."))\t\(type)\t\(.)"
    end;
 walk([])
' | column -t
```

Thanks to this script, we will receive responses in the following format, for example api/v1/report:

curl -s http://192.168.X.X/api/v1/report | ./format json.sh

```
number 74149
report.id
report.interval
                                                     number 5.435
                                                     number 2
report.tariff
report.date_time string 2024-12-14T05:23:05Z report.instantaneous_power.active.positive.total number 0
report.instantaneous_power.active.positive.l1
                                                    number 0
                                                     number 0
report.instantaneous_power.active.positive.12
                                                     number
report.instantaneous_power.active.positive.13
                                                             0
report.instantaneous_power.active.negative.total number
                                                              0
report.instantaneous_power.active.negative.l1
                                                     number 0
                                                    number 0
report.instantaneous power.active.negative.12
report.instantaneous_power.active.negative.l3 number 0
report.instantaneous_power.reactive.positive.l1 number 0
                                                     number 0
report.instantaneous_power.reactive.positive.l2
report.instantaneous power.reactive.positive.13 number 0
report.instantaneous power.reactive.negative.l1
                                                    number 0
report.instantaneous_power.reactive.negative.12
                                                     number
                                                             0
report.instantaneous power.reactive.negative.13
                                                     number
                                                              0
                                                     number 234
report.voltage.l1
report.voltage.12
                                                     number 0
                                                     number 0
report.voltage.13
                                                     number
                                                              0
report.current.l1
                                                     number 0
report.current.12
report.current.13
                                                     number 0
                                                    number 23.888
report.energy.active.positive.total
                                                    number 33.388
number 49.248
report.energy.active.positive.t1
report.energy.active.positive.t2
                                                    number 0.004
report.energy.active.negative.total
report.energy.active.negative.t1
                                                   number 7.868
                                                   number 1.097
report.energy.active.negative.t2
report.energy.reactive.positive.total
                                                   number 10.505
number 15.147
report.energy.reactive.negative.total
report.energy.reactive.imported.inductive.total number 33.715
report.energy.reactive.imported.inductive.t1 number 31.7
report.energy.reactive.imported.inductive.t2 number 2.015
report.energy.reactive.imported.capacitive.total number 2.247
```

©2025 whatwatt

Appendix D

The following table provides a description of selected OBIS codes.

Logical name (C.D.E) Short OBIS	Description				
96.1.0	Meter identifier				
96.14.0	Current tariff				
13.7.0	Instantaneous power factor				
1.8.0	Positive active energy (A+) total	Wh			
1.8.1	Positive active energy (A+) in tariff T1	Wh			
1.8.2	Positive active energy (A+) in tariff T2	Wh			
2.8.0	Negative active energy (A-) total	Wh			
2.8.1	Negative active energy (A-) in tariff T1	Wh			
2.8.2	Negative active energy (A-) in tariff T2	Wh			
3.8.0	Positive reactive energy (Q+) total	varh			
3.8.1	Positive reactive energy (Q+) in tariff T1	varh			
3.8.2	Positive reactive energy (Q+) in tariff T2	varh			
4.8.0	Negative reactive energy (Q-) total	varh			
4.8.1	Negative reactive energy (Q-) in tariff T1	varh			
4.8.2	Negative reactive energy (Q-) in tariff T2	varh			
5.8.0	Imported inductive reactive energy in 1-st quadrant (Q1) total	varh			
5.8.1	Imported inductive reactive energy in 1-st quadrant (Q1) in tariff T1	varh			
5.8.2	Imported inductive reactive energy in 1-st quadrant (Q1) in tariff T2	varh			
6.8.0	Imported capacitive reactive energy in 2-nd quadrant (Q2) total	varh			
6.8.1	Imported capacitive reactive energy in 2-nd quadr. (Q2) in tariff T1	varh			
6.8.2	Imported capacitive reactive energy in 2-nd quadr. (Q2) in tariff T2	varh			
7.8.0	Exported inductive reactive energy in 3-rd quadrant (Q3) total	varh			
7.8.1	Exported inductive reactive energy in 3-rd quadrant (Q3) in tariff T1	varh			
7.8.2	Exported inductive reactive energy in 3-rd quadrant (Q3) in tariff T2	varh			
8.8.0	Exported capacitive reactive energy in 4-th quadrant (Q4) total	varh			
8.8.1	Exported capacitive reactive energy in 4-th quadr. (Q4) in tariff T1	varh			
8.8.2	Exported capacitive reactive energy in 4-th quadr. (Q4) in tariff T2	varh			
1.6.0	Positive active maximum demand (A+) total	Wh			
1.6.1	Positive active maximum demand (A+) in tariff T1	Wh			
1.6.2	Positive active maximum demand (A+) in tariff T2	Wh			
2.6.0	Negative active maximum demand (A-) total	Wh			
2.6.1	Negative active maximum demand (A-) in tariff T1	Wh			
2.6.2	Negative active maximum demand (A-) in tariff T2	Wh			
1.7.0	Positive active instantaneous power (A+)	W			

Logical name (C.D.E) Short OBIS	Description	Unit
21.7.0	Positive active instantaneous power (A+) in phase L1	W
41.7.0	Positive active instantaneous power (A+) in phase L2	W
61.7.0	Positive active instantaneous power (A+) in phase L3	W
2.7.0	Negative active instantaneous power (A-)	W
22.7.0	Negative active instantaneous power (A-) in phase L1	W
42.7.0	Negative active instantaneous power (A-) in phase L2	W
62.7.0	Negative active instantaneous power (A-) in phase L3	W
3.7.0	Positive reactive instantaneous power (Q+)	var
23.7.0	Positive reactive instantaneous power (Q+) in phase L1	var
43.7.0	Positive reactive instantaneous power (Q+) in phase L2	var
63.7.0	Positive reactive instantaneous power (Q+) in phase L3	var
4.7.0	Negative reactive instantaneous power (Q-)	var
24.7.0	Negative reactive instantaneous power (Q-) in phase L1	var
44.7.0	Negative reactive instantaneous power (Q-) in phase L2	var
64.7.0	Negative reactive instantaneous power (Q-) in phase L3	var
9.7.0	Apparent instantaneous power (S+)	VA
32.7.0	Instantaneous voltage (U) in phase L1	V
52.7.0	Instantaneous voltage (U) in phase L2	V
72.7.0	Instantaneous voltage (U) in phase L3	V
31.7.0	Instantaneous current (I) in phase L1	A
51.7.0	Instantaneous current (I) in phase L2	A
71.7.0	Instantaneous current (I) in phase L3	A
42.0.0	Meter identifier	
96.1.1	Meter model	